
Embedded Systems Academy – www.ESAcademy.com

ESAcademy
Recommended Practice

MicroMessaging

W O R K D R A F T

Rev 0.75 of September 23rd, 2003

References:
[CiADS301] – CANopen Application Layer and Communication Profile,
CiA Draft Standard 301, Version 4.02

ESAcademy – MicroMessaging

 2

Table of Content
Table of Content ...2
1 Motivation and Introduction...3

1.1 Definition of Terms ...4
1.2 Adopting a minimal CANopen Object Dictionary.............................5

1.2.1 Device Type [1000,00]...6
1.2.2 Error Register [1001,00]..6
1.2.3 Heartbeat Time [1017,00]...6
1.2.4 Identity Record [1018,00]..7
1.2.5 Vendor ID [1018,01]...7
1.2.6 Product Code [1018,02] ..7
1.2.7 Revision Number [1018,03] ..7

2 The Communication Mechanisms ...7
2.1 Message Frame Format..7

2.1.1 The Message Identifier: Function Code and Node ID8
2.1.2 The Data Indicator: Checksum and DLC..................................9
2.1.3 Data Field Byte Order ..9

2.2 Network Control and Management Messages9
2.2.1 Master Control Message...10
2.2.2 Poll Message...10
2.2.3 Master State Message...12
2.2.4 Slave State Message...12
2.2.5 Emergency Message...13

2.3 Service Data Messages ..13
2.3.1 Service Data Request Message ..13
2.3.2 Service Data Response Message ...14

2.4 Process Data Messages ...15
2.4.1 Process Data Message ...15

2.5 Sharing the Network Media ..16
3 The Software Interfaces ..16

3.1 The Layer 2 Driver Interface...16
3.1.1 MM2.h Definition File ...16

3.2 The Layer 7 API..20
3.2.1 MM7.h Definition File ...21

4 MicroMessaging Gateway to CANopen..23

ESAcademy – MicroMessaging

 3

1 Motivation and Introduction
The goal of MicroMessaging is to create common software interfaces to be used
on different embedded networking architectures including, but not limited to
UARTs/RS-232/RS-485, I2C, SPI, LIN and CAN.

Figure 1 illustrates the two software interfaces defined: a layer 2 interface
(driver) towards the different physical implementation and a layer 7 interface
(API) to provide user/application access. The implementation of layers 3 to 7 (the
higher- layer protocol) adopt some of the basic features of CANopen [CiADS301].

Figure 1: The MicroMessaging Protcol Stack

To reach the goal of a common software interface, two software interfaces are
standardized in MicroMessaging:

1. The layer 2 driver interface offers software functions to transmit and
receive a message on all the different hardware platforms supported.

2. The layer 7 application programming interface provides a set of
application functions that directly allow sharing of process data among the
different network nodes.

In order support a wide variety of networking architectures, MicroMessaging
supports a flexible usage of the message identifier that is used to identify a
message on the network. Although the default is to use a message identifier with 8

ESAcademy – MicroMessaging

 4

bits, MicroMessaging can support network architectures using anywhere from 6
bits (like LIN) to 11 bits (like CAN) for the message identifier.

1.1 Definition of Terms
Checksum

When used on a network architecture that does not provide a build- in
checksum, MicroMessaging uses a 4-bit checksum generated by adding all
nibbles of a message.

Data Indicator

The data indicator is a byte containing a 4-bit checksum value and the
DLC.

DLC – Data Length Code

The data length code indicates how many data bytes are in a single
MicroMessaging message. The allowed values are in the range from zero
through eight.

Emergency

In severe error situations a MicroMessaging node may produce an
emergency message.

Function Code

The message identifier of each MicroMessaging message contains a
function code that indicates the function this message has.

Gateway

MicroMessaging networks using different network architectures can be
interconnected or connected to a CANopen network using gateways.

Master

A MicroMessaging network requires the presence of a master. Depending
on the functionality required, a minimal master might do nothing else but
send the master control message that starts the network.

Master Control Message

The master control message is a state-change command to either an
individual slave node or a broadcast to all slave nodes. Commands
available include start, stop and reset.

ESAcademy – MicroMessaging

 5

Message ID
The message identifier of a single MicroMessaging message contains a
function code and a node ID. These values determine from or to which
node the message is send and what the content is. Per default,
MicroMessaging uses an 8-bit message identifier.

Node-ID

Each MicroMessaging network node must have a unique node ID. The
node ID may be in the range of one through 31. The node ID is also used
in the message ID.

Object Dictionary

MicroMessaging adopts a minimal Object Dictionary as used by
CANopen. It contains the identification and configuration parameters of a
slave node.

Poll Message

When used on network architectures without multi-master access (multiple
nodes may try to access the network media at the same time), the poll
message is used to inform a single slave node that it may now transmit its
pending messages.

Process Data Channel

In MicroMessaging each node supports a total of 4 process data channels
that are used to communicate process data. Each channel supports up to 8
bytes of process data.

Service Data Channel

In MicroMessaging each node implements two service data channels
allowing access to the Object Dictionary: one to receive service data
requests and one to transmit service data responses.

1.2 Adopting a minimal CANopen Object Dictionary
MicroMessaging uses the basics of the CANopen Object Dictionary concept
[CiADS301] to address identification and configuration parameters in each node.
A master can access the Object Dictionary entries of each node using service data
request messages (see 2.3.1). To each service data request, the addressed slave
must respond with a service data response (see 2.3.2).

ESAcademy – MicroMessaging

 6

A single Object Dictionary entry is addressed using a 16-bit index and an 8-bit
subindex value. The data types stored in a single Object Dictionary entry may
consist of 1, 2, 3 or 4 bytes.

Table 1 shows the mandatory Object Dictionary entries that every
MicroMessaging slave node must implement. In addition, any other CANopen
Object Dictionary entry may be implemented, if useful for the particular
application.

Index
(hex)

Sub-
index

Name Type Access

1000 0 Device Type UNSIGNED32 RO
1001 0 Error Register UNSIGNED8 RO
1017 0 Heartbeat Time UNSIGNED16 RO/RW
1018 0 Identity Record UNSIGNED8 RO (‘3’)
1018 1 Vendor ID UNSIGNED32 RO
1018 2 Product Code UNSIGNED32 RO
1018 3 Revision Number UNSIGNED32 RO

Table 1: Mandatory Object Dictionary Entries

1.2.1 Device Type [1000,00]
With the read-only Device Type entry a node is able to report it general purpose.
The low-word of this 4-byte value is set to 0000h to indicate that this device does
not follow a standardized CANopen profile. The content of the high-word is
application specific and can be used to identify certain types of devices.

1.2.2 Error Register [1001,00]
The read-only Error Register is a 1-byte value that contains eight error flags that
can be used to indicate different errors. The Error Register is also part of the
optional emergency messages (see 2.2.5).

In MicroMessaging only bit zero is mandatory. If bit zero is set, a generic error
occurred. The usage of other bits is optional, but if used should be in accordance
to [CiADS301].

1.2.3 Heartbeat Time [1017,00]
The 2-byte heartbeat time specifies the heartbeat frequency of a node in
milliseconds. The slave state message (see 2.2.4) is transmitted as the heartbeat

ESAcademy – MicroMessaging

 7

with the frequency specified. Per default, this entry is read-only, however it can
also be implemented allowing a read-write access.

1.2.4 Identity Record [1018,00]
This 1-byte, read-only entry should always be three, indicating that three subindex
entries are available.

1.2.5 Vendor ID [1018,01]
This 4-byte, read-only entry contains the vendor ID of the manufacturer who
produced this device. The vendor ID used is that assigned to the manufacturer by
the CiA (www.can-cia.org).

Companies that do not have a CiA assigned vendor ID number should set the low-
word of this entry to 0000h.

1.2.6 Product Code [1018,02]
This 4-byte, read-only entry contains a manufacturer specific product
identification code. It can be used by manufacturers to distinguish between
different MicroMessaging products.

1.2.7 Revision Number [1018,03]
This 4-byte, read-only entry contains a revision number referring to the software
and hardware of the device. The high word should be used for a major and the
low-word for a minor revision number.

2 The Communication Mechanisms
The message format chosen for MicroMessaging supports a variety of network
architectures. Besides CAN, any 8-bit oriented message system is usable for
MicroMessaging.

2.1 Message Frame Format
A single MicroMessaging message is shown in Table 2 and consists of a message
identifier (default of 8 bits), a data indicator (with a 4-bit checksum and a 4-bit
data length counter) and up to 8 data bytes.

ESAcademy – MicroMessaging

 8

The bits in the message identifier are divided into a 3-bit function code stored in
the most significant bits and a node ID stored in the least significant bits. The
node ID field may use 3, 4 or 5 bits allowing for a maximum of 7, 15 or 31 nodes
in one MicroMessaging network.

Name Fct. Code Node ID Checksum DLC Data
Alt. Name Message ID Data Indicator Data Field
Length
(bits)

3 3, 4 or 5 4 4 0, 8, 16, 24, 32, 40,
48, 56 or 64

Table 2: MicroMessaging Message Frame

2.1.1 The Message Identifier: Function Code and Node ID
A total of 8 function codes are supported. In conjunction with the node ID, the
function code specifies the contents of a message. Table 3 shows the default
usage of message identifiers.

Fct.
Code

Node
ID

Message ID
(for 8-bit ID)

Message Contents
Direction

(for Slave)

0 0 00h Master Control Message Rx

0 1 – 31 01h-1Fh Emergency Tx

1 0 20h Poll Message Rx

1 1 – 31 21h-3Fh Process Data Channel 1 Default: Tx

2 0 40h Reserved n.a.

2 1 – 31 41h-5Fh Process Data Channel 2 Default: Rx

3 0 60h Reserved n.a.

3 1 – 31 61h-7Fh Process Data Channel 3 Default: Tx

4 0 80h Reserved n.a.

4 1 – 31 81h-9Fh Process Data Channel 4 Default: Rx

5 0 A0h Reserved n.a.

5 1 – 31 A1h-BFh Service Data Request Channel Rx

6 0 C0h Reserved n.a.

6 1 – 31 C1h-DFh Service Data Response Channel Tx

7 0 E0h Master Status Rx

7 1 – 31 E1h-FFh Slave Status Tx

Table 3: Usage of the Message Identifier

The usage of the process data channels (function codes 1 through 4 and nodes ID
1 through 31) may be changed and customized towards the application. The usage
of all other message identifiers is fixed and may not be changed.

ESAcademy – MicroMessaging

 9

2.1.2 The Data Indicator: Checksum and DLC

Note: If MicroMessaging is implemented on CAN, the checksum field is not
used, as CAN message frames already has a checksum mechanism build-in.

MicroMessaging uses a 4-bit checksum to ensure message integrity. The
checksum is build by adding up all nibbles of a MicroMessaging message,
including the checksum field itself.

When message identifiers with 6 or 7 bits are used, only the most 2 or 3
significant bits of the message identifier are used as its high nibble.

A message transmitter must ensure that the checksum field is filled with a value
that results in the total checksum for the massage to be zero.

A message receiver simply needs to verify that the checksum of the message is
zero.

The DLC (Data Length Code) has a value of zero through eight and indicates the
number of bytes in the data field.

2.1.3 Data Field Byte Order
MicroMessaging supports numerical data types that consist of multiple bytes. The
maximum number of bytes allowed per data type is four. Multiple byte data types
are transmitted in Little Endian format. The least significant byte is transmitted
first.

2.2 Network Control and Management Messages
The messages defined in this section are used to control and manage the nodes on
the network. They include messages to start and stop the network as well as status
and emergency messages.

ESAcademy – MicroMessaging

 10

2.2.1 Master Control Message
Function code zero, Node ID zero, broadcast by Master:
The master control message is a message send by the master and allows switching
the operation state of single or all slave nodes. All slaves MUST support the
reception of this message. The master control message corresponds to the
CANopen NMT Master command messages [CiADS301].

Fct.
Code

Node
ID

DLC Data 1 Data 2

0 0 2 state node
Table 4: Master Control Message

Table 4 shows the master control message. Data byte two is used to address a
specific node or all nodes. If “node” is set to zero, all nodes are addressed. If set
to a number of 1 through 31 the specific node with that node ID is addressed. The
possible values of “state” are shown in Table 5.

State Name Description
1 Start The addressed nodes start operating.
2 Stop The addressed nodes stop operating.

128 Service The addressed nodes go into service mode.
129 Reset The addressed nodes reset themselves.

Table 5: State Switch Commands

2.2.2 Poll Message
Function code one, Node ID zero, broadcast by Master or Slave:
The poll message shown in Table 6 is used differently on network architectures
that support and those that do not support multi-master access (multiple nodes
may write to the network at any time, such as CAN or I2C).

Fct.
Code

Node
ID

DLC Data 1

1 0 1 options
Table 6: Poll Message

On network architectures that do not support multi-master access, the poll
message MUST be supported by all slaves as it is used to inform an individual
node that it may now transmit all of its pending transmit messages. In this case the
poll message affects ALL messages that a node might transmit.

ESAcademy – MicroMessaging

 11

On a network with multi-master access, the poll message ONLY affects the
process data messages. Emergency, service and status messages are not affected
and can be transmitted at any time. On such networks an “options” value of zero
indicates that all nodes are polled, allowing a synchronized data transfer in
correspondence to using the SYNC message in CANopen [CiADS301].

Upon receiving its poll message, a node must immediately transmit all of its
pending messages. If a node does not start to reply within an application specific
time (default is 10ms), the master assumes that the node has nothing to transmit.
To avoid length timeouts, it is recommended to use the auto-poll feature described
below.

The available “options” of the poll message are shown in Table 7 which lists the
individual option bits.

Bit(s) Name Description
0..5 Node ID The node ID of the node to be polled.
6 Priority If this bit is set, the node should try to minimize its

transmissions and only transmit high-priority messages.
7 Auto Poll If this bit is set, the node will automatically generate the next

poll message as soon as it completed all of its transmissions.
The poll message generated will have the same contents, but
with the node ID incremented by one (node ID 31 is
“incremented” to node ID zero)

Table 7: Node Polling Options

The usage of the priority bit is entirely application specific. It allows for more
customization when time-critical communication methods must be implemented.

The auto poll bit allows the master to start an automated poll cycle of multiple
nodes by just sending one initial poll message. The node currently polled
automatically generates the poll message for the next node in line to be polled.

Example: If a network consists of three nodes with the node IDs one through
three, the master just transmits a poll message with node ID set to one and the
auto poll bit set. Node one will transmit all its messages and then automatically
poll node two, which in turn will automatically poll node three once it completed
its transmissions. A poll message with the node ID four is an indication for the
master that the poll cycle is now completed.

ESAcademy – MicroMessaging

 12

2.2.3 Master State Message
Function code seven, Node ID zero, broadcast by Master:
The master state message as shown in Table 8 is an optional indication to the
slaves about the master’s operating state. Implementation on both the master and
the slave is optional.

Fct.
Code

Node
ID

DLC Data 1

7 0 1 state
Table 8: Master State Message

Table 9 shows the possible state values reported by the state message. The values
correspond to CANopen operating states [CiADS301].

State Name Description
0 Boot The node just booted-up (after power-on or reset).
4 Stopped The node stopped all network operations. Only master

control messages are used by a node in this state.
5 Running The node is running.

127 Service The node is in service mode where no data messages
are transmitted or consumed.
Table 9: Operating States

2.2.4 Slave State Message
Function code seven, Node ID 1 through 31, broadcast by Slave:
All slaves MUST support transmitting their state message as shown in Table 10.
The transmit frequency is controlled by the heartbeat time described in section
1.2.3.

Fct.
Code

Node
ID

DLC Data 1

7 node 1 state
Table 10: Slave State Message

The state values reported are the same as described in Table 9. The node ID field
must be set to the node ID of the node transmitting the slave state message.

ESAcademy – MicroMessaging

 13

2.2.5 Emergency Message
Function code zero, Node ID 1 through 31, broadcast by Slave:
The support of emergency messages is optional. If implemented, emergencies
give slaves the opportunity to inform the master or other network nodes of serious
error conditions the encountered. The content of the emergency message is used
as specified by CANopen [CiADS301] and is shown in Table 11.

Fct.
Code

Node
ID

DLC Data 1 and 2 Data 3 Data 4 through 8

0 node 8 Error Code Error Register Error Field
Table 11: Emergency Message

Selected CANopen Error Codes are shown in , however all CANopen error codes
may be used. The Error Register is a copy of the error register described in section
1.2.2. The Error Field is manufacturer specific and may be used for node or
application specific error codes.

Code (hex) Description
00 00 Error reset or no error
10 00 Generic Error
50 00 Device Hardware Error
60 00 Device Software Error
81 00 Communication Error (Layer 2)
82 00 Protocol Error (Layer 7)

Table 12: Selected CANopen Error Codes

If a node recovers from a previous reported emergency it MUST transmit an
emergency message with the error code 0000 to inform other nodes of the
recovery.

2.3 Service Data Messages
The messages defined in this section are used to detect, maintain and configure
the nodes on the network.

2.3.1 Service Data Request Message
Function code five, Node ID 1 through 31, from Master to one Slave:
The message content of a service data request as shown in Table 13 directly
corresponds to the CANopen SDO Request [CiADS301] supporting expedited
access to an Object Dictionary entry.

ESAcademy – MicroMessaging

 14

Fct.

Code
Node

ID
DLC Data

1
Data
2, 3

Data
4

Data
5 to 8

5 node 8 cmd index subindex data
Table 13: Service Data Request Message

The fields ‘index” and “subindex” select the Object Dictionary entry to be
accessed. In case of a write command “data” contains the data bytes to be written,
otherwise the field is unused. The possible values of “cmd” are listed in Table
14.

Cmd Description
 Read command
 Write command with one data byte
 Write command with two data bytes
 Write command with three data bytes
 Write command with four data bytes

Table 14: Service Data Request Commands

2.3.2 Service Data Response Message
Function code six, Node ID 1 through 31, from one Slave to Master:
The message content of a service data request as shown in Table 15 directly
corresponds to the CANopen SDO Request [CiADS301] supporting expedited
access to an Object Dictionary entry.

Fct.
Code

Node
ID

DLC Data
1

Data
2, 3

Data
4

Data
5 to 8

6 node 8 options index subindex data
Table 15: Service Data Response Message

The fields ‘index” and “subindex” confirm the Object Dictionary entry to be
accessed. In case of a read command “data” contains the data bytes read,
otherwise the field is unused. The possible values of “options” are listed in Table
16.

ESAcademy – MicroMessaging

 15

Options Description

 Confirmation of write command
 Read response with one data byte
 Read response with two data bytes
 Read response with three data bytes
 Read response with four data bytes
 Object Dictionary access failed

Table 16: Service Data Response Options

In case of a failed service data access, the 4 bytes in the data field contain a
service data error code. This error code directly corresponds to the CANopen
SDO Abort Codes used in [CiADS301].

Code (hex) Description

Table 17: Selected Service Access Error Codes

2.4 Process Data Messages
The messages used in this section are entirely used for the exchange of process
data. Only nodes that are in the running state can produce or consume these
messages.

2.4.1 Process Data Message
Function code 1 through 4, Node ID 1 through 31, configurable:
Process data messages are used to exchange process data between
MicroMessaging nodes.

Fct.
Code

Node
ID

DLC Data
1 to 8

Default Usage

1 node 1 to 8 data 1st data channel of node, transmit
2 node 1 to 8 data 2nd data channel of node, receive
3 node 1 to 8 data 3rd data channel of node, transmit
4 node 1 to 8 data 4th data channel of node, receive

Table 18: Default Process Data Messages

ESAcademy – MicroMessaging

 16

2.5 Sharing the Network Media
The transmission types (message triggering mechanisms) supported by
MicroMessaging depend on the type of network media used. On a network media
supporting “multi-master-access” (any node can write to the bus at any time,
collisions get resolved automatically – available with CAN and I2C) nodes may
write the ir messages at any time – collisions get automatically resolved.

If the network media does not support “multi-master-access” (such as a UART
interface shared by multiple nodes), all transmissions only happen by polling: The
master becomes responsible to poll all the Slaves connected to the network
cyclically. Upon being polled, a node may transmit all its messages that are due
for transmission. The last message transmitted by a polled node is another poll
message. The content of this poll message (which node gets polled next) is
configurable.

3 The Software Interfaces
MicroMessaging defines two software interfaces. One at the layer two interfacing
to the network architecture used (the driver) and one at the layer seven interfacing
to the application (the API),

3.1 The Layer 2 Driver Interface
The functionality of the driver interface was carefully selected to be able to
support a wide variety of networking architectures.

3.1.1 MM2.h Definition File

/**
MODULE: MM2
CONTAINS: MicroMessaging Layer 2 Driver Interface Definitions
COPYRIGHT: Embedded Systems Academy, Inc. 2003
 See www.MicroMessaging.com
 This software was written in accordance to the guidelines at
 www.esacademy.com/software/softwarestyleguide.pdf
DISCLAIM: Read and understand our disclaimer before using this code!
 www.esacademy.com/disclaim.htm
LICENSE: General Public License as specified by GNU
VERSION: 0.75, Pf 23-SEP-03

HISTORY: 0.75, Pf 23-SEP-03, First Published Version
***/

ESAcademy – MicroMessaging

 17

/**
DEFINES TO CONTROL THE OPERATION OF THE DRIVER
**/

// This defines the number of bits a message identifier has.
// Possible values are 6 (LIN), 8 (default) or 11 (CANopen)
#define NR_OF_MESSAGE_ID_BITS 8

// The following definition controls the network media arbitration
// method used.
// 1: Multi-Master (as available in CAN and I2C), nodes can access the
// network at any time.
// 2: Master-Polling, nodes are individually polled with a poll message
// containing the node ID of the node currently polled.
// POLL_MSG_ID defines the message ID of the poll message used.
#define NET_ARBITRATION 1
#define POLL_MSG_ID 0x20

// The number of transmit and receive data channels is selectable in order
// to be able to optimize the code
#define NR_OF_TX_CHANNELS 2
#define NR_OF_RX_CHANNELS 2

// Defined Service Responses (CANopen SDO responses)
#define DEVICETYPE 0x00030191L // [1000,00]
#define VENDORID 0x01455341L // [1018,01]
#define PRODUCTID 0x00020012L // [1018,02]
#define REVISION 0x00010005L // [1018,03]

/**
GLOBAL TYPE DEFINITIONS
**/

// Standard data types
#define BIT bit
#define BYTE unsigned char
#define WORD unsigned int
#define DWORD unsigned long

// Boolean expressions
#define BOOLEAN unsigned char
#define TRUE 0xFF
#define FALSE 0

/**
GLOBAL FUNCTIONS
**/

/**
DOES: Initializes the driver with the desired bit rate.
 For a complete initialization, MM2_SetMessageFilter must be called
 for every message ID that should be received by the driver.
RETURNS: TRUE, if initialization executed OK.
 FALSE, if initialization failed.
**/
BYTE MM2_Init
 (
 WORD BitRate // Bitrate in multiple of 100bps
);

ESAcademy – MicroMessaging

 18

/**
DOES: Sets a single receive filter. The driver only accepts messages
 from the network for which a filter was set.
RETURNS: TRUE, if message ID filter was set successfully.
 FALSE, if message ID filter could not be set.
**/
BYTE MM2_SetMessageFilter
 (
 BYTE MessageID
);

/**
DOES: Pushes the next message into the transmit queue.
RETURNS: TRUE, if transmit queue accepted the message.
 FALSE, if transmit queue is full.
**/
BYTE MM2_PushMessage
 (
 BYTE pMM2TxMsg[] // Pointer to MicroMessage
 // 1: address byte
 // 2: number of data bytes (max of 8)
 // 3-10: data bytes
);

/**
DOES: Pulls a message from the receive queue.
RETURNS: TRUE, if message was received.
 FALSE, if receive queue is empty.
**/
BYTE MM2_PullMessage
 (
 BYTE pMM2RxMsg[] // Pointer to MicroMessage
 // Caller must provide a buffer of 10 bytes!!!
 // 1: address byte
 // 2: number of data bytes (max of 8)
 // 3-10: data bytes
);

/**
DOES: This function reads a 1 millisecond timer tick. The timer tick
 must be a WORD and must be incremented once per millisecond.
RETURNS: 1 millisecond timer tick
NOTES: Data consistency must be insured by the driver.
 (On 8-bit systems, disable the timer interrupt incrementing
 the timer tick while executing this function)
 Systems that cannot provide a 1ms tick may consider incrementing
 the timer tick only once every "x" ms, if the increment is by "x".
**/
WORD MM2_GetTime
 (
 void
);

ESAcademy – MicroMessaging

 19

/**
DOES: This function compares a WORD timestamp to the internal timer tick
 and returns 1 if the timestamp expired/passed.
RETURNS: 1 if timestamp expired/passed
 0 if timestamp is not yet reached
NOTES: The maximum timer runtime measurable is 0x8000 (about 32 seconds).
 For the usage in MicroMessaging that is sufficient.
**/
BYTE MM2_IsTimeExpired
 (
 WORD timestamp // Timestamp to be checked for expiration
);
/**
// Recommended implementation for this function (8051 version):
{
WORD time_now;

 EA = 0; // Disable Interrupts
 time_now = gTimCnt;
 EA = 1; // Enable Interrupts
 timestamp++; // To ensure the minimum runtime
 if (time_now > timestamp)
 {
 if ((time_now - timestamp) < 0x8000)
 return 1;
 else
 return 0;
 }
 else
 {
 if ((timestamp - time_now) > 0x8000)
 return 1;
 else
 return 0;
 }
}
**/

/**
CALL BACK FUNCTIONS (MUST BE IMPLEMENTED BY APPLICATION)
**/

/**
DOES: The driver calls this call back function if a fatal error occurs.
**/
void MM2CB_FatalError
 (
 WORD ErrCode // Error Code reported by driver
);

/**
DOES: The MM7 handler calls this if a node reset is requested by
 the network.
**/
void MM2CB_Reset
 (
 void
);

ESAcademy – MicroMessaging

 20

/**
DOES: Call-back function that is called by the driver upon receiving
 a MicroMessage. Application can now use MM2_PullMessage to pick
 up the message.
RETURNS: Nothing.
**/
void MM2CB_MessageReceived
 (
 BYTE MsgID // The message identifier of the MicroMessage received.
);

/**
DOES: Call-back function that is called by the driver upon transmittal
 of a MicroMessage.
RETURNS: Nothing.
**/
void MM2CB_MessageTransmitted
 (
 BYTE MsgID // The message identifier of the MicroMessage transmitted.
);

3.2 The Layer 7 API
The MicroMessaging layer 7 API provides a simple standardized interface
focusing on the process data exchanged. Within a node, the process data
exchanged is organized into a process image: an array of bytes.

MicroMessaging uses Process Data Channels for transporting process data. On
layer 2 a data channel corresponds to a single message. As a result a single data
channel can have up to 8 process data bytes. Each individual node can have up to
four process data channels.

An application may place multiple variables into each process data channel. The
only limiting rules are:

1. A single variable must consist of 1, 2, 3 or 4 bytes.
2. The total number of bytes in a process data channel is limited to 8.
3. All variables of one process data channel must be located sequentially in

the process image (starting at a specified offset, number of bytes as
specified by DLC).

4. Numeric multiple-byte variables must be transferred in "Little Endian"
format (lowest significant byte comes first).

ESAcademy – MicroMessaging

 21

3.2.1 MM7.h Definition File

/**
MODULE: MM7
CONTAINS: MicroMessaging Layer 7 API Definitions
COPYRIGHT: Embedded Systems Academy, Inc. 2003
 See www.MicroMessaging.com
 This software was written in accordance to the guidelines at
 www.esacademy.com/software/softwarestyleguide.pdf
DISCLAIM: Read and understand our disclaimer before using this code!
 www.esacademy.com/disclaim.htm
LICENSE: General Public License as specified by GNU
VERSION: 0.75, Pf 23-SEP-03

HISTORY: 0.75, Pf 23-SEP-03, First Published Version
***/

#include "MM2.h"

// Definition of the process image that holds all process data.
// Default size is 32 bytes (4x8)
BYTE gProcImg[32];

/**
GLOBAL FUNCTIONS
**/

/**
DOES: Initializes the MicroMessaging protocol stack.
RETURNS: TRUE, if initialization executed OK.
 FALSE, if initialization failed.
**/
BYTE MM7_Init
 (
 BYTE NodeID, // MicroMessaging Node ID (1 to 31)
 WORD BitRate, // Desired bit rate in 100 bits per second
 WORD HeartRate // Default Heartbeat rate in milliseconds
);

/**
DOES: Initializes one of the four data channels available for each node.
RETURNS: TRUE, if initialization executed OK.
 FALSE, if initialization failed.
**/
BYTE MM7_InitDataChannel
 (
 BYTE Channel, // Channel number (1-4)
 BYTE Direction, // 0 for receive channel, 1 for transmit channel
 WORD EventTime, // Only used for transmit channels: set to 0 if data
 // to be transmitted on every poll message or set to
 // number of milliseconds between transfers
 BYTE MessageID, // 0 for default ID or explicit message ID to be used
 BYTE len, // Number of data bytes in channel (0-8)
 BYTE offset // Offset in process image
);

ESAcademy – MicroMessaging

 22

/**
DOES: Operates the MicroMessaging protocol stack. This function must
 be called frequently in the main while(1) background task.
**/
void MM7_ProcessStack
 (
 void
);

ESAcademy – MicroMessaging

 23

4 MicroMessaging Gateway to CANopen
Multiple MicroMessaging networks can be interconnected when CANopen is
used as a backbone. Simple gateway tasks running on nodes that have access to
both a MicroMessaging network and a CANopen network can provide such an
interconnection.

As CANopen can handle up to 127 nodes, multiple MicroMessaging networks can
share the same CANopen backbone, if the gateway task supports the use an offset
for the node ID used on CANopen. For example it could have nodes 1-31 (01h-
1Fh) on its MicroMessaging network, but translate that to nodes 33-63 (21h-3Fh)
on the CANopen network.

A gateway task that runs on a microcontroller with access to both CANopen and a
MicroMessaging network can be kept very simple if both networks use the pre-
defined connection set. This is the default usage scheme for the message
identifiers (11-bit on CANopen, 8-bit on MicroMessaging). These schemes divide
the message identifiers into a function code (most significant bits) and the node
ID (least significant bits). Exchanging messages between MicroMessaging and
CANopen only requires a translation of the function code and node ID used on
both systems as shown in table Table 19.

Micro
Messaging

Function Code

MicroMessaging
Usage

CANopen
Usage

CANopen
Function

Code

0 Emergency Emergency 1

1 Process Data Channel 1 TPDO1 3

2 Process Data Channel 2 RPDO1 4

3 Process Data Channel 3 TPDO2 5

4 Process Data Channel 4 RPDO2 6

5 Service Data Response Channel SDO Response 11

6 Service Data Request Channel SDO Request 12

7 Status Channel NMT Control 14

Table 19: Translating Function Codes from MicroMessaging to
CANopen

