EMBEDDED
SYSTEMS
ACADEMY

ESAcademy
Recommended Practice
MicroMessaging

WORK DRAFT

Rev 0.75 of September 23™, 2003
References:

[CIADS301] — CANopen Application Layer and Communication Profile,
CiA Draft Standard 301, Version 4.02

Embedded Systems Academy — www.ESAcademy.com

ESAcademy — MicroMessaging

Table of Content

Table Of CONTENTeiieee e 2
1 Motivation and INtrOdUCTION.........ccccueeriirere e 3
1.1 Definition Of TEIMMS ..o 4
1.2 Adopting a minimal CANopen Object Dictionary...........c.cceceverenenn 5
1.2.1 Device Type [1000,00].....ccceiieieiieieeieeiesieere e se e see e 6
1.2.2 Error Register [L001,00]......cccerrrerrenieneeneeie e 6
123 Heartbeat Time [1017,00]......ccccceririririnieeree s 6
1.2.4 Identity Record [1018,00].....cccccceiieiieierierieeeeseesee e e e 7
1.25 Vendor ID [1018,01]....cccueieieieriesieeiesieeeseeee e 7
126 Product Code [1018,02]ccceeeiirereririeeeeeeesee s 7
1.2.7 Revision Number [1018,03]....cccccceieerreieneeieseeseesee e 7

2 The Communication MeChaniSMScccoveriririniiniere e 7
21 Message Frame FOrmat..........cocooiiiiiieiiiec e 7
211 The Message Identifier: Function Code and Node ID 8
2.1.2 The Data Indicator: Checksum and DLC............ccoccovvvninennen. 9
2.13 Data Field Byte Orderccooiieeneeneneeneeie e 9

2.2 Network Control and Management MeSSagesc.ccocevvrerernne 9
221 Master Control MESSAgecovevereereeie e e 10
2.2.2 POl MESSAQE......ceeeiiecee ettt 10
223 Master State MESSAJE.......ccoccvererrireereee e 12
224 Slave State MeSSAQEe.......cccvevvriereeie e 12
2.2.5 Emergency MESSagec.cccccvviieriiiee i siee s 13

2.3 Service Data MESSAQESccceeiirierieeiieriesieeee et ee e e 13
231 Service Data Request MeSSagecccooevererierenerieneseeeenes 13
2.3.2 Service Data Response MeSSageccocvvveeveerieeeeseesvesieenes 14

2.4 Process Data MESSAQESccccevveririieiiiieeiiee s siees e s 15
241 Process Data MeSSAgeccoovvriiereiinee e 15

2.5 Sharing the Network Mediacccocveveieeneeie e 16

3 The Software INTErfacCes ... 16
3.1 The Layer 2 Driver INterfacecccovviriierieieeseseseseseseeeees 16
3.1.1 MM2.h Definition Filecccooveeeeieeeeeeceeceee e 16

3.2 ThE LAYEI 7 APl ettt 20
3.2.1 MM7.h Definition File ... 21

4 MicroMessaging Gateway t0 CANOPEN.......cccevereriererene e 23

ESAcademy — MicroMessaging

1 Motivation and Introduction

The goal of MicroMessaging is to create common software interfaces to be used
on different embedded networking architectures including, but not limited to
UARTYRS-232/RS-485, 12C, SPI, LIN and CAN.

Figure 1 illustrates the two software interfaces defined: alayer 2 interface
(driver) towards the different physical implementation and a layer 7 interface
(API) to provide user/application access. The implementation of layers 3 to 7 (the
higher- layer protocol) adopt some of the basic features of CANopen [CIADS301].

Generic |0 f Device Profile End-User Specific
Modules or Applications Applications

| Microhessaging — Layer 7 — AP |

Microhessaging — Protocol Stack
CAMopen oriented

| Microhessaging — Layer 2 — Driver Interface ‘

Driver Criver Criver Diriver Diriver

|uaRTIRS00c|| PC || can || LN || Other busses |

I:I Standardized Software Interfaces

|:| Software
l:l Hardware

Figure 1. The MicroMessaging Protcol Stack

To reach the goa of a common software interface, two software interfaces are
standardized in MicroMessaging:
1. Thelayer 2 driver interface offers software functions to transmit and
receive a message on al the different hardware platforms supported.
2. Thelayer 7 application programming interface provides a set of
application functions that directly allow sharing of process data among the
different network nodes.

In order support awide variety of networking architectur es, MicroM essaging
supports a flexible usage of the message identifier that is used to identify a
message on the network. Although the default is to use a message identifier with 8

ESAcademy — MicroMessaging

bits, MicroM essaging can support network architectures using anywhere from 6
bits (like LIN) to 11 bits (like CAN) for the message identifier.

1.1 Definition of Terms

Checksum
When used on a network architecture that does not provide a build-in
checksum, MicroMessaging uses a 4-bit checksum generated by adding all
nibbles of a message.

Data Indicator
The data indicator is a byte containing a 4-bit checksum value and the
DLC.

DL C — Data Length Code
The data length code indicates how many data bytes are in asingle
MicroMessaging message. The allowed values are in the range from zero
through eight.

Emergency
In severe error situations a MicroM essaging node may produce an
emergency message.

Function Code
The message identifier of each MicroMessaging message contains a
function code that indicates the function this message has.

Gateway
MicroMessaging networks using different network architectures can be
interconnected or connected to a CANopen network using gateways.

M aster
A MicroMessaging network requires the presence of a master. Depending
on the functionality required, aminimal master might do nothing else but
send the master control message that starts the network.

Master Control Message
The master control message is a state-change command to either an
individual dave node or a broadcast to all slave nodes. Commands
available include start, stop and reset.

ESAcademy — MicroMessaging

Message ID
The message identifier of a single MicroMessaging message contains a
function code and anode ID. These values determine from or to which
node the message is send and what the content is. Per defaullt,
MicroMessaging uses an 8-bit message identifier.

Node-1D
Each MicroMessaging network node must have a unique node ID. The
node ID may be in the range of one through 31. The node ID is also used
in the message ID.

Object Dictionary
MicroMessaging adopts a minimal Object Dictionary as used by
CANopen. It contains the identification and configuration parameters of a
dave node.

Poll M essage
When used on network architectures without multi- master access (multiple
nodes may try to access the network media at the same time), the poll
message is used to inform a single dave node that it may now transmit its

pending messages.

Process Data Channel
In MicroMessaging each node supports atotal of 4 process data channels
that are used to communicate process data. Each channel supports up to 8
bytes of process data.

Service Data Channel
In MicroMessaging each node implements two service data channels
allowing access to the Object Dictionary: one to receive service data
reguests and one to transmit service data responses.

1.2 Adopting a minimal CANopen Object Dictionary

MicroMessaging uses the basics of the CANopen Object Dictionary concept
[CIADS301] to address identification and configuration parameters in each node.
A master can access the Object Dictionary entries of each node using service data
request messages (see 2.3.1). To each service data request, the addressed slave
must respond with a service data response (see 2.3.2).

ESAcademy — MicroMessaging

A single Object Dictionary entry is addressed using a 16-bit index and an 8-bit
subindex value. The data types stored in a single Object Dictionary entry may
consist of 1, 2, 3 or 4 bytes.

Table 1 shows the mandatory Object Dictionary entries that every
MicroMessaging slave node must implement. In addition, any other CANopen
Object Dictionary entry may be implemented, if useful for the particular
application.

Index Sub- Name Type Access
(hex) index

1000 0 Device Type UNSIGNED32 RO
1001 0 Error Register UNSIGNEDS RO
1017 0 Heartbeat Time UNSIGNED16 RO/RW
1018 0 Identity Record UNSIGNEDS8 RO (‘3)
1018 1 Vendor ID UNSIGNED32 RO
1018 2 Product Code UNSIGNED32 RO
1018 3 Revision Number UNSIGNED32 RO

Table 1: Mandatory Object Dictionary Entries

1.2.1 Device Type [1000,00]

With the read-only Device Type entry a node is able to report it genera purpose.
The lowword of this 4-byte value is set to 0000h to indicate that this device does
not follow a standardized CANopen profile. The content of the high-word is
application specific and can be used to identify certain types of devices.

1.2.2 Error Reqister [1001,00]

Theread-only Error Register is a 1-byte value that contains eight error flags that
can be used to indicate different errors. The Error Register is aso part of the
optional emergency messages (see 2.2.5).

In MicroMessaging only bit zero is mandatory. If bit zero is set, a generic error
occurred. The usage of other bitsis optional, but if used should be in accordance
to [CIADS301].

1.2.3 Heartbeat Time [1017,00]

The 2-byte heartbeat time specifies the heartbeat frequency of anodein
milliseconds. The dave state message (see 2.2.4) istransmitted as the heartbeat

ESAcademy — MicroMessaging

with the frequency specified. Per default, this entry is read-only, however it can
also be implemented alowing a read-write access.

1.2.4 Identity Record [1018,00]

This 1-byte, read-only entry should always be three, indicating that three subindex
entries are available.

1.2.5 Vendor ID [1018,01]

This 4-byte, read-only entry contains the vendor ID of the manufacturer who
produced this device. The vendor ID used is that assigned to the manufacturer by
the CiA (www.cancia.org).

Companies that do not have a CiA assigned vendor ID number should set the low-
word of this entry to 0000h.

1.2.6 Product Code [1018,02]

This 4-byte, read-only entry contains a manufacturer specific product
identification code. It can be used by manufacturers to distinguish between
different MicroM essaging products.

1.2.7 Revision Number [1018,03]

This 4-byte, read-only entry contains arevision number referring to the software
and hardware of the device. The high word should be used for a major and the
low-word for a minor revision number.

2 The Communication Mechanisms

The message format chosen for MicroMessaging supports a variety of network
architectures. Besides CAN, any 8-bit oriented message system is usable for
MicroMessaging.

2.1 Message Frame Format

A single MicroMessaging message is shown in Table 2 and consists of a message
identifier (default of 8 bits), adata indicator (with a 4-bit checksum and a 4-bit
data length counter) and up to 8 data bytes.

ESAcademy — MicroMessaging

The bits in the message identifier are divided into a 3-hit function code stored in
the most significant bits and a node ID stored in the least significant bits. The
node ID field may use 3, 4 or 5 bits allowing for a maximum of 7, 15 or 31 nodes
in one MicroMessaging network.

Name Fct. Code | Node ID | Checksum | DLC | Data

Alt. Name | Message ID Data Indicator Data Field

Length 3 3,40r5 4 4 0, 8, 16, 24, 32, 40,
(bits) 48, 56 or 64

Table 2: MicroMessaging Message Frame

2.1.1 The Message ldentifier: Function Code and Node ID

A total of 8 function codes are supported. In conjunction with the node ID, the
function code specifies the contents of a message. Table 3 shows the default
usage of message identifiers.

Fct. | Node Message ID Message Contents Direction
Code ID | (for 8-bit ID) (for Slave)
0 0 00h Master Control Message Rx
0 1-31 01h-1Fh |Emergency TX
1 0 20h Poll Message Rx
1 1-31 21h-3Fh |Process Data Channel 1 Default: Tx
2 0 40h Reserved n.a.
2 1-31 41h-5Fh |Process Data Channel 2 Default: Rx
3 0 60h Reserved n.a.
3 1-31 61h-7Fh |Process Data Channel 3 Default: Tx
4 0 80h Reserved n.a.
4 1-31 81h-9Fh |Process Data Channel 4 Default: Rx
5 0 AOh Reserved n.a.
5 1-31 Alh-BFh |Service Data Request Channel Rx
6 0 COh Reserved n.a.
6 1-31| Cih-DFh [Service Data Response Channel |Tx
7 0 EOh Master Status Rx
7 1-31 Elh-FFh |[Slave Status TX

Table 3: Usage of the Message Identifier

The usage of the process data channels (function codes 1 through 4 and nodes ID
1 through 31) may be changed and customized towards the application The usage
of all other message identifiersis fixed and may not be changed.

ESAcademy — MicroMessaging

2.1.2 The Data Indicator: Checksum and DLC

Note: If MicroMessaging is implemented on CAN, the checksum field is not
used, as CAN message frames aready has a checksum mechanism build-in.

MicroMessaging uses a 4-hit checksum to ensure message integrity. The
checksum is build by adding up al nibbles of a MicroMessaging message,
including the checksum field itsalf.

When message identifiers with 6 or 7 bits are used, only the most 2 or 3
significant bits of the message identifier are used as its high nibble.

A message transmitter must ensure that the checksum field is filled with a value
that results in the total checksum for the massage to be zero.

A message receiver simply needs to verify that the checksum of the message is
zero.

The DLC (Data Length Code) has a vaue of zero through eight and indicates the
number of bytesin the data field.

2.1.3 Data Field Byte Order

MicroMessaging supports numerical data types that consist of multiple bytes. The
maximum number of bytes allowed per datatypeis four. Multiple byte data types
are transmitted in Little Endian format. The least significant byte is transmitted
first.

2.2 Network Control and Management Messages

The messages defined in this section are used to control and manage the nodes on
the network. They include messages to start and stop the network as well as status
and emergency messages.

ESAcademy — MicroMessaging

2.2.1 Master Control Message

Function code zero, Node | D zero, broadcast by Master:

The master control message is a message send by the master and allows switching
the operation state of single or al slave nodes. All slaves MUST support the
reception of this message. The master control message corresponds to the
CANopen NMT Master command messages[CiADS301].

Fct. Node | DLC | Data 1l | Data 2
Code ID

0 0 2 state node
Table 4: Master Control Message

Table 4 shows the master control message. Data byte two is used to address a
specific node or al nodes. If “node” is set to zero, all nodes are addressed. If set
to a number of 1 through 31 the specific node with that node ID is addressed. The
possible values of “state” are shown in Table 5.

State Name Description
1 Start The addressed nodes start operating.
2 Stop The addressed nodes stop operating.
128 Service | The addressed nodes go into service mode.
129 Reset The addressed nodes reset themselves.

Table 5: State Switch Commands

2.2.2 Poll Message

Function code one, Node I D zero, broadcast by Master or Slave:

The poll message shown in Table 6 is used differently on network architectures
that support and those that do not support multi- master access (multiple nodes
may write to the network at any time, such as CAN or 12C).

Fct. Node DLC | Data 1
Code ID
1 0 1 options

Table 6: Poll Message

On network architectures that do not support multi- master access, the poll
message MUST be supported by all davesasit is used to inform an individual
node that it may now transmit al of its pending transmit messages. In this case the
poll message affects ALL messages that a node might transmit.

10

ESAcademy — MicroMessaging

On a network with multi- master access, the poll message ONLY affects the
process data messages. Emergency, service and status messages are not affected
and can be transmitted at any time. On such networks an “options’ value of zero
indicates that all nodes are polled, allowing a synchronized data transfer in
correspondence to using the SYNC message in CANopen [CIADS301].

Upon receiving its poll message, a node must immediately transmit all of its
pending messages. If a node does not start to reply within an application specific
time (default is 10ms), the master assumes that the node has nothing to transmit.
To avoid length timeouts, it is recommended to use the auto-poll feature described
below.

The available “options’ of the poll message are shown in Table 7 which lists the
individual option bits.

Bit(s) Name Description
0..5 Node ID | The node ID of the node to be polled.
6 Priority [If this bit is set, the node should try to minimize its
transmissions and only transmit high-priority messages.
7 Auto Poll | If this bit is set, the node will automatically generate the next

poll message as soon as it completed all of its transmissions.
The poll message generated will have the same contents, but
with the node ID incremented by one (node ID 31 is
“incremented” to node ID zero)

Table 7: Node Polling Options

The usage of the priority bit is entirely application specific. It alows for more
customization when time-critical communication methods must be implemented.

The auto poll bit allows the master to start an automated poll cycle of multiple
nodes by just sending one initial poll message. The node currently polled
automatically generatesthe poll message for the next node in line to be polled.

Example: If anetwork consists of three nodes with the node 1Ds one through
three, the master just transmits a poll message with node ID set to one and the
auto poll bit set. Node one will transmit al its messages and then automatically
poll node two, which in turn will automatically poll node three once it completed
its transmissions. A poll message with the node ID four is an indication for the
master that the poll cycle is now completed.

11

ESAcademy — MicroMessaging

2.2.3 Master State Message

Function code seven, Node I D zero, broadcast by Master:

The master state message as shown in Table 8 is an optional indication to the
slaves about the master’ s operating state. Implementation on both the master and
the dave is optional.

Fct. Node DLC Data 1
Code ID
7 0 1 state

Table 8: Master State Message

Table 9 shows the possible state values reported by the state message. The values
correspond to CANopen operating states [CIADS301].

State Name Description
0 Boot The node just booted-up (after power-on or reset).
4 Stopped | The node stopped all network operations. Only master
control messages are used by a node in this state.
5 Running | The node is running.
127 Service | The node is in service mode where no data messages
are transmitted or consumed.

Table 9: Operating States

2.2.4 Slave State Message

Function code seven, Node ID 1 through 31, broadcast by Slave:

All daves MUST support transmitting their state message as shown in Table 10.
The transmit frequency is controlled by the heartbeat time described in section
1.2.3.

Fct. Node DLC Data 1
Code 1D
7 node 1 state

Table 10: Slave State Message

The state values reported are the same as described in Table 9. The node 1D field
must be set to the node ID of the node transmitting the save state message.

12

ESAcademy — MicroMessaging

2.2.5 Emergency Message

Function code zero, Node ID 1 through 31, broadcast by Slave:

The support of emergency messages is optiona. If implemented, emergencies
give slaves the opportunity to inform the master or other network nodes of serious
error conditions the encountered. The content of the emergency message is used
as specified by CANopen [CIADS301] and isshown in Table 11.

Fct. Node | DLC Data 1 and 2 Data 3 Data 4 through 8
Code ID
0 node 8 Error Code Error Register Error Field

Table 11: Emergency Message

Selected CANopen Error Codes are shown in, however all CANopen error codes
may be used. The Error Register is a copy of the error register described in section
1.2.2. The Error Field is manufacturer specific and may be used for node or
application specific error codes.

Code (hex) Description
00 00 Error reset or no error
10 00 Generic Error
50 00 Device Hardware Error
60 00 Device Software Error
81 00 Communication Error (Layer 2)
82 00 Protocol Error (Layer 7)

Table 12: Selected CANopen Error Codes

If a node recovers from a previous reported emergency it MUST transmit an
emergency message with the error code 0000 to inform other nodes of the
recovery.

2.3 Service Data Messages

The messages defined in this section are used to detect, maintain and configure
the nodes on the network.

2.3.1 Service Data Request Message

Function code five, Node ID 1 through 31, from Master to one Slave:

The message content of a service datarequest as shown in Table 13 directly
corresponds to the CANopen SDO Request [CiIADS301] supporting expedited
access to an Object Dictionary entry.

13

ESAcademy — MicroMessaging

Fct. Node DLC Data Data Data Data
Code ID 1 2,3 4 5t0 8
5 node 8 cmd index subindex data

Table 13: Service Data Request Message

The fields ‘index” and “subindex” select the Object Dictionary entry to be
accessed. In case of awrite command “data’ contains the data bytes to be written,
otherwise the field is unused. The possible values of “cmd” arelisted in Table
14.

Cmd Description

Read command

Write command with one data byte
Write command with two data bytes
Write command with three data bytes
Write command with four data bytes

Table 14: Service Data Request Commands

2.3.2 Service Data Response Message

Function code six, Node ID 1 through 31, from one Slaveto Master:

The message content of a service data request as shown in Table 15 directly
corresponds to the CANopen SDO Request [CIADS301] supporting expedited
access to an Object Dictionary entry.

Fct. Node | DLC Data Data Data Data
Code ID 1 2,3 4 5t0 8
6 node 8 options index subindex data

Table 15: Service Data Response Message

Thefields ‘index” and “subindex” confirm the Object Dictionary entry to be
accessed. In case of aread command “data’ contains the data bytes read,
otherwise the field is unused. The possible values of “options’ are listed in Table
16.

14

ESAcademy — MicroMessaging

Options Description
Confirmation of write command
Read response with one data byte
Read response with two data bytes
Read response with three data bytes
Read response with four data bytes
Object Dictionary access failed

Table 16: Service Data Response Options

In case of afailed service data access, the 4 bytesin the datafield contain a
service data error code. This error code directly corresponds to the CANopen
SDO Abort Codes used in [CIADS301].

Code (hex) Description

Table 17: Selected Service Access Error Codes

2.4 Process Data Messages

The messages used in this section are entirely used for the exchange of process
data. Only nodes that are in the running state can produce or consume these

messages.

2.4.1 Process Data Message

Function code 1 through 4, Node ID 1 through 31, configurable:
Process data messages are used to exchange process data between
MicroMessaging nodes.

Fct. Node DLC Data Default Usage
Code ID 1to 8
1 node |1to8| data 1°" data channel of node, transmit
2 node |1to8| data 2" data channel of node, receive
3 node |1to8| data 3" data channel of node, transmit
4 node |1to8| data 4" data channel of node, receive

Table 18: Default Process Data Messages

15

ESAcademy — MicroMessaging

2.5 Sharing the Network Media

The transmission types (message triggering mechanisims) supported by
MicroMessaging depend on the type of network media used. On a network media
supporting “multi- master-access’ (any node can write to the bus at any time,
collisions get resolved automatically — available with CAN and I2C) nodes may
write their messages at any time — collisions get automatically resolved.

If the network media does not support “multi- master-access’ (such asa UART
interface shared by multiple nodes), al transmissions only happen by polling: The
master becomes responsible to poll all the Slaves connected to the network
cyclically. Upon being polled, a node may transmit all its messages that are due
for transmission. The last message transmitted by a polled node is another poll
message. The content of this poll message (which node gets polled next) is
configurable.

3 The Software Interfaces

MicroMessaging defines two software interfaces. One at the layer two interfacing
to the network architecture used (the driver) and one at the layer seven interfacing
to the application (the API),

3.1 The Layer 2 Driver Interface

The functionality of the driver interface was carefully selected to be able to
support awide variety of networking architectures.

3.1.1 MM2.h Definition File

/*** *kkkk kK

MCDULE: MR

CONTAINS: M croMessagi ng Layer 2 Driver Interface Definitions

COPYRI GHT: Enbedded Systens Acadeny, |nc. 2003
See www. M cr oMessagi ng. com
This software was witten in accordance to the guidelines at
www. esacadeny. cont sof t war e/ sof t war est yl egui de. pdf

DI SCLAIM Read and understand our disclainmer before using this code!
www. esacadeny. cond di scl ai m ht m

LI CENSE: General Public License as specified by G\U

VERSI ON: 0. 75, Pf 23-SEP-03

HI STCRY: 0. 75, Pf 23-SEP-03, First Published Version

***/

16

ESAcademy — MicroMessaging

/**

DEFI NES TO CONTRCL THE OPERATI ON OF THE DRI VER

**/

/1 This defines the nunber of bits a message identifier has.
/] Possible values are 6 (LIN), 8 (default) or 11 (CANopen)
#define NR_ OF_MESSAGE ID BITS 8

/1 The followi ng definition controls the network nedia arbitration

/1 method used.

/1 1. Multi-Master (as available in CAN and |2C), nodes can access the
/1 network at any tine.

/1 2: Master-Polling, nodes are individually polled with a poll message
/1 contai ning the node ID of the node currently poll ed.

1/ POLL_MSG | D defines the nessage | D of the poll nessage used.

#defi ne NET_ARBI TRATI ON 1

#define POLL_MSG_ | D 0x20

/1 The nunber of transmt and recei ve data channels is selectable in order
/] to be able to optimze the code

#defi ne NR_OF_TX CHANNELS 2

#define NR_OF_RX_CHANNELS 2

/] Defined Service Responses (CANopen SDO responses)
#def i ne DEVI CETYPE 0x00030191L // [1000, 00]
#define VENDORID 0x01455341L // [1018, 01]
#def i ne PRODUCTI D 0x00020012L // [1018, 02]
#define REVISION 0x00010005L // [1018, 03]

/**

GLCBAL TYPE DEFI NI TI ONS

**/

/1 Standard data types
#define BIT bit

#define BYTE unsigned char
#define WORD unsigned int
#def i ne DWORD unsi gned | ong

/1 Bool ean expressions

#def i ne BOOLEAN unsi gned char
#defi ne TRUE OxFF

#define FALSE O

/**

GLOBAL FUNCTI ONS

**/

/**

DCES: Initializes the driver with the desired bit rate.
For a conplete initialization, MW_Set MessageFilter nust be called
for every nmessage | D that should be received by the driver.
RETURNS: TRUE, if initialization executed OK
FALSE, if initialization failed.

**/

BYTE MVR_I ni t

(
WORD BitRate // Bitrate in nultiple of 100bps
)

17

ESAcademy — MicroMessaging

/**

DCES: Sets a single receive filter. The driver only accepts nmessages
fromthe network for which a filter was set.
RETURNS: TRUE, if message IDfilter was set successfully.

FALSE, if message ID filter could not be set.
**/
BYTE MW2_Set MessageFi | ter

(
BYTE Messagel D

)

/**

DCES: Pushes the next nmessage into the transmt queue.
RETURNS: TRUE, if transmt queue accepted the nessage.
FALSE, if transmt queue is full.

**/

BYTE MV2_PushMessage

(

BYTE pMWRTxMsg[] // Pointer to M croMessage
/1 1: address byte
/1 2: nunber of data bytes (max of 8)
// 3-10: data bytes

)

/**

DCES: Pulls a message fromthe recei ve queue.
RETURNS: TRUE, if nessage was received.
FALSE, if receive queue is enpty.

**/

BYTE MV2_Pul | Message

(
BYTE pMVRRxMsg[] // Pointer to M croMessage
[/l Caller must provide a buffer of 10 bytes!!!
/1 1. address byte
/1 2: nunber of data bytes (nmax of 8)
/1 3-10: data bytes
)

/**

DCES: This function reads a 1 millisecond timer tick. The timer tick
nmust be a WORD and nust be increnented once per mllisecond.
RETURNS: 1 mllisecond tiner tick
NOTES: Dat a consi stency nust be insured by the driver.
(On 8-bit systens, disable the tinmer interrupt increnenting
the tiner tick while executing this function)
Systens that cannot provide a 1ns tick may consider increnenting
the timer tick only once every "x" ms, if the increment is by "x".
**/
WORD MMVR_Get Ti e
(
voi d

)

18

ESAcademy — MicroMessaging

/**

DCES: This function conpares a WORD tinestanp to the internal tiner tick
and returns 1 if the tinmestanp expired/ passed.
RETURNS: 1 if tinmestanp expired/ passed
Oif timestanp is not yet reached
NOTES: The maxi mumtimer runtime measurable is 0x8000 (about 32 seconds).
For the usage in McroMessaging that is sufficient.
**/
BYTE MV2_I sTi neExpi red

(
WORD tinmestanp // Tinestanp to be checked for expiration

’
/**

/1 Recommended inplenentation for this function (8051 version):

{
WORD ti me_now,

EA = 0; // Disable Interrupts

time_now = gTi nOnt;

EA = 1; // Enable Interrupts

ti mestanp++; // To ensure the mnimumruntine
if (time_now > tinestanp)

if ((time_now - tinmestanp) < 0x8000)
return 1;
el se
return O;
}
el se
{
if ((tinestanp - time_now) > 0x8000)
return 1,
el se
return O;

}

**/

/**

CALL BACK FUNCTI ONS (MUST BE | MPLEMENTED BY APPLI CATI ON)

**/

/**

DCES: The driver calls this call back function if a fatal error occurs.

**/

void MWRCB_ Fat al Error

(
WORD ErrCode // Error Code reported by driver
)

/**

DCES: The MW handler calls this if a node reset is requested by
the network.
**/
void M\RCB_Reset
(
voi d

)

19

ESAcademy — MicroMessaging

/**

DCES: Cal | -back function that is called by the driver upon receiving
a McroMessage. Application can now use MV2_Pul | Message to pick
up the nessage.

RETURNS: Not hi ng.

**/

voi d MVRCB_MessageRecei ved

BYTE Msgl D // The nessage identifier of the McroMessage received.
)

/**

DCES: Cal | -back function that is called by the driver upon transnittal
of a M croMessage.
RETURNS: Not hi ng.

**/

void MVRCB_MessageTransnitted

(
BYTE Msgl D // The message identifier of the McroMessage transmtted.
)

3.2 The Layer 7 API

The MicroMessaging layer 7 API provides a simple standardized interface
focusing on the process data exchanged. Within anode, the process data
exchanged is organized into a process image: an array of bytes.

MicroMessaging uses Process Data Channels for transporting process data. On
layer 2 adata channel corresponds to a single message. As aresult asingle data
channel can have up to 8 process data bytes. Each individual node can have up to

four process data channels.

An application may place multiple variables into each process data channel. The

only limiting rules are:

1. A single variable must consist of 1, 2, 3 or 4 bytes.
2. Thetotal number of bytesin a process data channel islimited to 8.

3. All variables of one process data channel must be located sequentially in

the process image (starting at a specified offset, number of bytes as
specified by DLC).

4. Numeric multiple-byte variables must be transferred in "Little Endian”

format (lowest significant byte comesfirst).

20

ESAcademy — MicroMessaging

3.2.1 MM7.h Definition File

/**

MODULE: MW7

CONTAINS: M croMessagi ng Layer 7 APl Definitions

COPYRI GHT: Enbedded Systens Acadeny, Inc. 2003
See www. M cr oMessagi ng. com
This software was witten in accordance to the guidelines at
www. esacadeny. com sof t war e/ sof t war est yl egui de. pdf

DI SCLAIM Read and understand our disclainer before using this code!
www. esacadeny. coni di scl ai m ht m

LI CENSE: General Public License as specified by G\U

VERSI ON: 0. 75, Pf 23-SEP-03

HI STORY: 0. 75, Pf 23-SEP-03, First Published Version

***/

#i ncl ude "M, h"

/1 Definition of the process inmage that holds all process data.
// Default size is 32 bytes (4x8)
BYTE gProcl ng[32] ;

/********************************** khkkhkhkhkhhhhhkhkhkhkhkrkhAAA kA A Ak Ak kA hkhkddhkhhhhhhhkx*k

GLOBAL FUNCTI ONS

**/

/**

DCES: Initializes the McroMessagi ng protocol stack.
RETURNS: TRUE, if initialization executed OK
FALSE, if initialization failed.

**/

BYTE MW_I ni t

(

BYTE Nodel D, /1 M croMessaging Node ID (1 to 31)

WORD BitRate, // Desired bit rate in 100 bits per second
WORD HeartRate // Default Heartbeat rate in mlliseconds

)

/**

DCES: Initializes one of the four data channels avail able for each node.
RETURNS: TRUE, if initialization executed OK
FALSE, if initialization failed.

**/

BYTE MW _I ni t Dat aChannel

(

BYTE Channel , /] Channel nunber (1-4)

BYTE Direction, // O for receive channel, 1 for transmt channel

WORD EventTinme, // Only used for transmt channels: set to 0 if data
// to be transmitted on every poll nessage or set to
/1 nunber of mlliseconds between transfers

BYTE Messagel D, // O for default ID or explicit message ID to be used

BYTE | en, /1 Nurmber of data bytes in channel (0-8)
BYTE of f set /1 Ofset in process inage
)

21

ESAcademy — MicroMessaging

/**

DCES: Operates the M croMessagi ng protocol stack. This function nust
be called frequently in the main while(1) background task.
**/
voi d MW_ProcessSt ack
(.
void

)

22

ESAcademy — MicroMessaging

4 MicroMessaging Gateway to CANopen

Multiple MicroMessaging networks can be interconnected whenCANopen is
used as a backbone. Simple gateway tasks running on nodes that have access to
both a MicroMessaging network and a CANopen network can provide such an
interconnection.

As CANopen can handle up to 127 nodes, multiple MicroMessaging networks can
share the same CANopen backbone, if the gateway task supports the use an offset
for the node ID used on CANopen. For example it could have nodes 1-31 (01h
1Fh) on its MicroMessaging network, but trandlate that to nodes 33-63 (21h 3Fh)
on the CANopen network.

A gateway task that runs on a microcontroller with access to both CANopen and a
MicroMessaging network can be kept very smple if both networks use the pre-
defined connection set. This is the default usage scheme for the message
identifiers (11-bit on CANopen, 8-hit on MicroMessaging). These schemes divide
the message identifiers into a function code (most significant bits) and the node
ID (least significant bits). Exchanging messages between MicroM essaging and
CANopen only requires atrandation of the function code and node 1D used on
both systems as shown in table Table 19.

wong | Merouesssgng [canopen | Chleren
Function Code Code
0 Emergency Emergency 1
1 Process Data Channel 1 TPDO1 3
2 Process Data Channel 2 RPDO1 4
3 Process Data Channel 3 TPDO2 5
4 Process Data Channel 4 RPDO2 6
5 Service Data Response Channel |SDO Response 11
6 Service Data Request Channel [SDO Request 12
7 Status Channel NMT Control 14
Table 19: Translating Function Codes from MicroMessaging to
CANopen

23

